Follow US

Showing posts with label Tokelau. Show all posts
Showing posts with label Tokelau. Show all posts

Wednesday, 18 August 2010

Tropical Plant Fats: Coconut Oil, Part I

Posted by Admin
Traditional Uses for Coconut

Coconut palms are used for a variety of purposes throughout the tropics. Here are a few quotes from the book Polynesia in Early Historic Times:
Most palms begin to produce nuts about five years after germination and continue to yield them for forty to sixty years at a continuous (i.e., nonseasonal) rate, producing about fifty nuts a year. The immature nut contains a tangy liquid that in time transforms into a layer of hard, white flesh on the inner surface of the shell and, somewhat later, a spongy mass of embryo in the nut's cavity. The liquid of the immature nut was often drunk, and the spongy embryo of the mature nut often eaten, raw or cooked, but most nuts used for food were harvested after the meat had been deposited and before the embryo had begun to form...

After the nut had been split, the most common method of extracting its hardened flesh was by scraping it out of the shell with a saw-toothed tool of wood, shell, or stone, usually lashed to a three-footed stand. The shredded meat was then eaten either raw or mixed with some starchy food and then cooked, or had its oily cream extracted, by some form of squeezing, for cooking with other foods or for cosmetic or medical uses...

Those Polynesians fortunate enough to have coconut palms utilized their components not only for drink and food-- in some places the most important, indeed life-supporting food-- but also for building-frames, thatch, screens, caulking material, containers, matting, cordage, weapons, armor, cosmetics, medicine, etc.
Mainstream Ire

Coconut fat is roughly 90 percent saturated, making it one of the most highly saturated fats on the planet. For this reason, it has been the subject of grave pronouncements by health authorities over the course of the last half century, resulting in its near elimination from the industrial food system. If the hypothesis that saturated fat causes heart disease and other health problems is correct, eating coconut oil regularly should tuck us in for a very long nap.

Coconut Eaters

As the Polynesians spread throughout the Eastern Pacific islands, they encountered shallow coral atolls that were not able to sustain their traditional starchy staples, taro, yams and breadfruit. Due to its extreme tolerance for poor, salty soils, the coconut palm was nearly the only food crop that would grow on these islands*. Therefore, their inhabitants lived almost exclusively on coconut and seafood for hundreds of years.

One group of islands that falls into this category is Tokelau, which fortunately for us was the subject of a major epidemiological study that spanned the years 1968 to 1982: the Tokelau Island Migrant Study (1). By this time, Tokelauans had managed to grow some starchy foods such as taro and breadfruit (introduced in the 20th century by Europeans), as well as obtaining some white flour and sugar, but their calories still came predominantly from coconut.

Over the time period in question, Tokelauans obtained roughly half their calories from coconut, placing them among the most extreme consumers of saturated fat in the world. Not only was their blood cholesterol lower than the average Westerner, but their hypertension rate was low, and physicians found no trace of previous heart attacks by ECG (age-adjusted rates: 0.0% in Tokelau vs 3.5% in Tecumseh USA). Migrating to New Zealand and cutting saturated fat intake in half was associated with a rise in ECG signs of heart attack (1.0% age-adjusted) (2, 3).

Diabetes was low in men and average in women by modern Western standards, but increased significantly upon migration to New Zealand and reduction of coconut intake (4). Non-migrant Tokelauans gained body fat at a slower rate than migrants, despite higher physical activity in the latter (5). Together, this evidence seriously challenges the idea that coconut is unhealthy.

The Kitavans also eat an amount of coconut fat that would make Dr. Ancel Keys blush. Dr. Staffan Lindeberg found that they got 21% of their 2,200 calories per day from fat, nearly all of which came from coconut. They were getting 17% of their calories from saturated fat; 55% more than the average American. Dr. Lindeberg's detailed series of studies found no trace of coronary heart disease or stroke, nor any obesity, diabetes or senile dementia even in the very old (6, 7).

Of course, the Tokelauans, Kitavans and other traditional cultures were not eating coconut in the form of refined, hydrogenated coconut oil cake icing. That distinction will be important when I discuss what the biomedical literature has to say in the next post.


* Most also had pandanus palms, which are also tolerant of poor soils and whose fruit provided a small amount of starch and sugar.
Read More

Monday, 20 July 2009

The Diet-Heart Hypothesis: Stuck at the Starting Gate?

Posted by Admin
The diet-heart hypothesis is the idea that (1) dietary saturated fat, and in some versions, dietary cholesterol, raise blood cholesterol in humans and (2) therefore contribute to the risk of heart attack.

I'm not going to spend a lot of time on the theory in relation to dietary cholesterol because the evidence that typical dietary amounts cause heart disease in humans is weak.  Here's a graph from the Framingham Heart study (via the book
Prevention of Coronary Heart Disease, by Dr. Harumi Okuyama et al.) to drive home the point. Eggs are the main source of cholesterol in the American diet. In this graph, the "low" group ate 0-2 eggs per week, the "medium" group ate 3-7, and the "high" group ate 7-14 eggs per week (click for larger image): The distribution of blood cholesterol levels between the three groups was virtually identical. The study also found no association between egg consumption and heart attack risk. Dietary cholesterol does not have a large impact on serum cholesterol in the long term, perhaps because humans are adapted to eating cholesterol. Most people are able to adjust their own cholesterol metabolism to compensate when the amount in the diet increases. Rabbits don't have that feedback mechanism because their natural diet doesn't include cholesterol, so feeding them dietary cholesterol increases blood cholesterol and causes vascular pathology.

The first half of the diet-heart hypothesis states that eating saturated fat raises blood cholesterol. This has been accepted without much challenge by diet-health authorities for nearly half a century. In 1957, Dr. Ancel Keys proposed a formula (Lancet 2:1959. 1957) to predict changes in total cholesterol based on the amount of saturated and polyunsaturated fat in the diet. This formula, based primarily on short-term trials from the 1950s, stated that saturated fat is the primary dietary influence on blood cholesterol.

According to Keys' interpretation of the trials, saturated fat raised, and to a lesser extent polyunsaturated fat lowered, blood cholesterol.
But there were significant flaws in the data from the very beginning, which were pointed out in this critical 1973 literature review in the American Journal of Clinical Nutrition (free full text).

The main problem is that the controlled trials typically compared saturated fats to omega-6 linoleic acid (LA)-rich vegetable oils, and when serum cholesterol was higher in the saturated fat group, this was most often attributed to the saturated fat raising blood cholesterol rather than the LA lowering it. When a diet high in saturated fat was compared to the basal diet without changing LA, often no significant increase in blood cholesterol was observed. Studies claiming to show a cholesterol-raising effect of saturated fat often introduced it after an induction period rich in LA. Thus, the effect sometimes had more to do with LA lowering blood cholesterol than saturated fat raising it. This is not at all what I was expecting to find when I began looking through these trials.


Reading through the short-term controlled trials, I was surprised by the variability and lack of agreement between them. Some of this was probably due to a lack of control over variables and non-optimal study design. But if saturated fat has a dominant effect on serum cholesterol in the short term, it should be readily and consistently demonstrable.  

The long-term data are not kind to the diet-heart hypothesis. Reducing saturated fat while greatly increasing LA certainly does lower blood cholesterol substantially. This was the finding in the well-controlled Minnesota Coronary Survey trial, for example (14% reduction). But in other cases where LA intake changed less, such as MRFIT, the Women's Health Initiative Diet Modification trial and the Lyon Diet-Heart trial, reducing saturated fat intake had little or no effect on total cholesterol or LDL (0-3% reduction).  The small changes that did occur could have been due to other factors, such as increased fiber and phytosterols, since these were multiple-factor interventions.

Another blow to the idea that saturated fat raises cholesterol in the long term comes from observational studies. Here's a graph of data from the Health Professionals Follow-up study, which followed 43,757 health professionals for 6 years (via the book
Prevention of Coronary Heart Disease by Dr. Harumi Okuyama et al.): What this graph shows is that at a relatively constant LA intake, neither saturated fat intake nor the ratio of LA to saturated fat were related to blood cholesterol in freely living subjects. This was true across a wide range of saturated fat intakes (7-15%). 

There's more. If saturated fat were important in determining the amount of blood cholesterol in the long term, you'd expect populations who eat the most saturated fat to have high blood cholesterol levels. But that's not the case. The Masai traditionally get a high proportion of their calories from milk fat, half of which is saturated. In 1964, Dr. George V. Mann published a paper showing that traditional Masai warriors eating practically nothing but very fatty milk, blood and meat had an average cholesterol of 115 mg/dL in the 20-24 year age group. For comparison, he published values for American men in the same age range: 198 mg/dL (J. Atherosclerosis Res. 4:289. 1964). Apparently, eating three times the saturated animal fat and several times the cholesterol of the average American wasn't enough to elevate their blood cholesterol. What does elevate the cholesterol of a Masai man?
Junk food.

Now let's swim over to the island of Tokelau, where the traditional diet includes nearly 50% of calories from saturated fat from coconut. This is the highest saturated fat intake of any population I'm aware of. How's their cholesterol? Men in the age group 20-24 had a concentration of 168 mg/dL in 1976, which was lower than Americans in the same age group despite a four-fold higher saturated fat intake.
Tokelauans who migrated to New Zealand, eating half the saturated fat of their island relatives, had a total cholesterol of 191 mg/dL in the same age group and time period, and substantially higher LDL (J. Chron. Dis. 34:45. 1981). Sucrose consumption was 2% on Tokelau and 13% in New Zealand. Saturated fat seems to take a backseat to some other diet/lifestyle factor(s).  Body fatness and excess calorie intake are good candidates, since they influence circulating lipoproteins.

Does dietary saturated fat influence total cholesterol and LDL over the long term?  I don't have the answers, but I do think it's interesting that the evidence is much less consistent than it's made out to be.  It may be that if dietary saturated fat influences total cholesterol or LDL concentration in the long term, the effect is is secondary to other factors.  That being said, it's clear that linoleic acid, in large amount, reduces circulating total cholesterol and LDL.
Read More

Sunday, 25 January 2009

The Tokelau Island Migrant Study: The Final Word

Posted by Admin
Over the course of the last month, I've outlined some of the major findings of the Tokelau Island Migrant study. It's one of the most comprehensive studies I've found of a traditional culture transitioning to a modern diet and lifestyle. It traces the health of the inhabitants of the Pacific island Tokelau over time, as well as the health of Tokelauan migrants to New Zealand.

Unfortunately, the study began after the introduction of modern foods. We will never know for sure what Tokelauan health was like when their diet was completely traditional. To get some idea, we have to look at other traditional Pacific islanders such as the Kitavans.

What we can say is that an increase in the consumption of modern foods on Tokelau, chiefly white wheat flour and refined sugar, correlated with an increase in several non-communicable disorders, including overweight, diabetes and severe tooth decay. Further modernization as Tokelauans migrated to New Zealand corresponded with an increase in nearly every disorder measured, including heart disease, weight gain, diabetes, asthma and gout. These are all "diseases of civilization", which are not observed in hunter-gatherers and certain non-industrial populations throughout the world.

One of the most interesting things about Tokelauans is their extreme saturated fat intake, 40- 50% of calories. That's more than any other population I'm aware of. Yet Tokelauans appear to have a low incidence of heart attacks, lower than their New Zealand- dwelling relatives who eat half as much saturated fat. This should not be buried in the scientific literature; it should be common knowledge.

Overall, I believe the Tokelau Island Migrant study (among others) shows us that partially replacing nourishing traditional foods with modern foods such as processed wheat and sugar, is enough to cause a broad range of disorders not seen in hunter-gatherers but typical of modern societies. Changes in lifestyle between Tokelau and New Zealand may have also played a role.
The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma
Read More

Saturday, 24 January 2009

The Tokelau Island Migrant Study: Gout

Posted by Admin
Gout is a disorder in which uric acid crystals form in the joints, causing intense pain. The body forms uric acid as a by-product of purine metabolism. Purines are a building block of DNA, among other things. Uric acid is normally excreted into the urine, hence the name.

On Tokelau between 1971 and 1982, gout prevalence fell slightly. In migrants to New Zealand, gout prevalence began at the same level as on Tokelau but increased rapidly over the same time period. Here are the prevalence data for men, from Migration and Health in a Small Society: the Case of Tokelau (I don't have data for women):

This paper found that the age-standardized risk of developing gout was 9 times higher in New Zealand than on Tokelau for men, and 2.7 times higher for women.

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma
Read More

Wednesday, 21 January 2009

The Tokelau Island Migrant Study: Asthma

Posted by Admin
Asthma may be another "disease of civilization", uncommon in non-industrial cultures. Between 1980 and 2001, its prevalence more than doubled in American children 17 years and younger. The trend is showing no sign of slowing down (CDC NHANES surveys).



The age-standardized asthma prevalence in Tokelauan migrants to New Zealand age 15 and older, was 2 - 6 times higher than in non-migrants from 1976 to 1982, depending on gender and year. The highest prevalence was in New Zealand migrant women in 1976, at 6.8%. The lowest was in Tokelauan men in 1976 at 1.1%.

A skeptic might suggest it's because these adults grew up around certain types of pollen or other antigens, and were exposed to new ones later in life. However, even migrant children in the 0-4 age group, who were most likely born in NZ, had more asthma than on Tokelau.

What could contribute to the increased asthma prevalence upon modernization? I'm not particularly knowledgeable about the mechanisms of asthma, but it seems likely to involve a chronic over-activation of the immune system ("inflammation").

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes

The Tokelau Island Migrant Study data in this post come from the book Migration and Health in a Small Society: The Case of Tokelau.

Thanks to the EPA and Wikipedia for the graph image (public domain).
Read More

Monday, 19 January 2009

The Tokelau Island Migrant Study: Diabetes

Posted by Admin
This post will be short and sweet. Diabetes is a disease of civilization. As Tokelauans adopted Western industrial foods, their diabetes prevalence increased. At any given time point, age-standardized diabetes prevalence was higher in migrants to New Zealand than those who remained on Tokelau:


This is not a difference in diagnosis. Tokelauans were examined for diabetes by the same group of physicians, using the same criteria. It's also not a difference in average age, sice the numbers are age-standardized. On Tokelau, diabetes prevalence doubled in a decade. Migrants to New Zealand in 1981 had roughly three times the prevalence of diabetes that Tokelauans did in 1971. I can only imagine the prevalence is even higher in 2008.

We don't know what the prevalence was in Tokelauans when their diet was completely traditional, but I would expect it to be low like other traditional Pacific island societies. I'm looking at a table right now of age-standardized diabetes prevalence on 11 different Pacific islands. There is quite a bit of variation, but the pattern is clear: the more modernized, the higher the diabetes rate. In several cases, the table has placed two values side-by-side: one value for rural inhabitants of an island, and another for urban inhabitants of the same island. In every case, the prevalence of diabetes is higher in the urban group. In some cases, the difference is as large as four-fold.

The lowest value goes to the New Caledonians of Touho, who are also considered the least modernized on the table (although even their diet is not completely traditional). Men have an age-standardized diabetes prevalence of 1.8%, women 1.4%. At the other extreme are the Micronesians of Nauru, affluent due to phosphate resources, who have a prevalence of 33.4% for men and 32.1% for women. They subsist mostly on imported food and are extremely obese.

The same patterns can be seen in Africa, the Arctic and probably everywhere that has adopted processed Western foods. White rice alone (compared with the combination of wheat flour and sugar) does not seem to have this effect.

The data in this post are from the book Migration and Health in a Small Society: the Case of Tokelau.

The Tokelau Island Migrant Study: Background and Overview

The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
Read More

Friday, 16 January 2009

The Tokelau Island Migrant Study: Weight Gain

Posted by Admin
Between 1968 and 1982, Tokelauans in nearly all age groups gained weight, roughly 5 kilograms (11 pounds) on average. They also became slightly taller, but not enough to offset the gain in weight. By 1980-82, migrants to New Zealand had become especially heavy, with all age groups weighing more than non-migrants by about 5 kg (11 lb) on average, and 10 kg (22 lb) more than Tokelauans did in 1968.

The body mass index (BMI) is a rough estimate of fat mass (although it can be confounded by muscle mass), and is the weight in kilograms divided by the square of the height in meters [BMI = weight / (height^2)]. A BMI of 25 to 30 is considered overweight; 30 and over is considered obese.

The graphs I'm about to present require some explanation. The data in each graph were collected from the same individuals over time (15-69 years old). That means some weight gain is expected, as this population normally gains weight into middle age (then loses weight). What's interesting to note is the difference in the rate of weight change between migrants and non-migrants. The first two data points in 1968 are baseline, and compare non-migrants with "pre-migrants" still living on Tokelau. The second two data points in 1981-82 compare the same individual migrants in New Zealand with the same non-migrants.
Unless they all decided to become body builders, migrants to New Zealand gained more fat mass than Tokelauans between 1968 and 1982. The rate of weight gain in New Zealand was more than twice as fast for men and more than 50% faster for women than on Tokelau.

Why did Tokelauans and especially migrants to New Zealand gain weight?  Probably because they had greater access to a wide variety of calorie-dense, palatable foods of modern commerce.  The introduction of wheat and sugar, at the expense of coconut and traditional carbohydrate sources, was the main change to the Tokelauan diet during this time period. See this post for a graph.

Finally, there's the question of exercise. Did a change in energy expenditure contribute to weight gain? The study didn't collect data on exercise during the time period in question, so all we have are anecdotes. During this time, men living on Tokelau progressively adopted outboard motors for their fishing boats, replacing the traditional sails and oars. Their energy expenditure probably decreased.

But what about women? Tokelauan women traditionally perform household tasks such as weaving mats and preparing food. Their energy expenditure probably didn't change much over the same time period. Since both men and women on Tokelau gained weight, it would be hard to argue that exercise was a dominant factor.

How about migrants to New Zealand? Here's a quote from Migration and Health in a Small Society: the Case of Tokelau:
Overall it is our belief that most of the migrants expend greater energy in their work than is currently the case in Tokelau.
Exercise doesn't appear to have been the main factor, although the data don't allow us to be totally confident about this.
Read More

Wednesday, 14 January 2009

The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health

Posted by Admin
Let's get right to the meat of this study. It's relevant to the hypothesis that saturated fat is a cause of cardiovascular disease.  Tokelauans traditionally obtained 40-50% of their calories from saturated fat, in the form of coconut meat. That's more than any other group I'm aware of.

So are the Tokelauans dropping like flies of cardiovascular disease?  I don't have access to the best data of all: actual heart attack incidence data. But we do have some telltale markers. In 1971-1982, researchers collected data from Tokelau and Tokelauan migrants to New Zealand on cholesterol levels, blood pressure and electrocardiogram (ECG) readings.

The Tokelauan diet, as I've described in detail in previous posts, is traditionally based on coconut, fish, starchy tubers and fruit. By 1982, their diet also contained a significant amount of imported flour and sugar. Migrants to New Zealand had a much more varied diet that was also more typically Western: more carbohydrate, coming chiefly from wheat, sugar and potatoes; more processed sweet foods and drinks; more red meat; more vegetables; more dairy and eggs. Sugar intake was 13 percent of calories, compared to 8 percent on Tokelau. Saturated fat intake in NZ was half of what it was on Tokelau, while total fat intake was similar. Polyunsaturated fat intake was higher in NZ, 4% as opposed to 2% in Tokelau. I don't have data to back this up, but I think it's likely that the n-6:n-3 ratio increased upon migration.

Blood pressure did not change significantly over time in Tokelau from 1971 to 1982, if anything it actually declined slightly. It was consistently higher in NZ than in Tokelau at all timepoints. Men were roughly three times more likely to be hypertensive in NZ than on Tokelau at all timepoints (4.0% vs. 12.0% in the early 1970s). Women were about twice as likely to be hypertensive (8.1% vs. 15.0%).

On to cholesterol. Total cholesterol in male Tokelauans was a bit lower on average than in New Zealand, but neither was particularly elevated (182 vs. 199 mg/dL). LDL was also a bit higher in NZ males (119 vs. 132 mg/dL). Triglycerides were lower in Tokelauan men than in NZ (80 vs. 114 mg/dL). There were no differences in total cholesterol, LDL cholesterol or triglycerides between Tokelauan and NZ women.  It's interesting that serum lipids don't correspond at all to saturated fat intake.

But does it cause heart attacks? The best data I have from this study are ECG readings. These use electrodes to monitor the electrical activity of the heart. There are certain ECG patterns that suggest that a person has had a heart attack (Minnesota codes 1-1 and 1-2). The data I am going to present here are all age-standardized, meaning they are comparing between groups of the same age. On Tokelau in 1982, 0.0% of men 40-69 years old showed ECG readings that indicated a probable past heart attack. In NZ in 1980-81, 1.0% of men 40-69 years old showed the same ECG readings. In Tecumseh U.S.A. in 1965, 3.5% of men 40-69 years old showed the same ECG pattern. I don't have data for women.

These data don't prove that no one ever has a heart attack on Tokelau. Tokelauans do have heart attacks sometimes, and they also have strokes (at least in modern times). But they do allow us to compare in quantitative terms between genetically similar people living in two different environments.

This is consistent with what has been observed on Kitava and other traditional Pacific island cultures: a vanishingly small incidence of cardiovascular disease while they retain their traditional diet and lifestyle (and sometimes even when some processed Western food has been introduced). When diets and lifestyles become modern, there is invariably a rise in the incidence of chronic disease.

These data raise serious questions about the role of saturated fat in cardiovascular disease. Tokelau underlines the fact that a non-industrial diet and lifestyle may be a more significant protective factor than the quality of ingested fat.

Unless otherwise noted, the data in this post are from the book Migration and Health in a Small Society: the Case of Tokelau.
Read More

Tuesday, 6 January 2009

The Tokelau Island Migrant Study: Dental Health

Posted by Admin
I'm always on the lookout for studies that can confirm or deny the information in Nutrition and Physical Degeneration. Traveling around the world in the 1920s and 1930s, Dr. Weston Price found a number of non-industrial cultures that had excellent dental and overall health, including a high resistance to tooth decay, perfectly straight teeth, and wisdom teeth that erupted without impacting. These same cultures developed extreme dental problems, including severe dental decay and crooked teeth in the younger generation, upon adopting modern European foods. These foods always included white flour and refined sugar, with variable contributions from canned goods and vegetable oils.

I have detailed information on the Tokelauan diet beginning in 1968 and ending in 1982. The traditional diet until the 1960s consisted of coconut, fish, breadfruit, pulaka, fruit, pigs, chickens and wild fowl. These are typical Polynesian foods. From the 1960s through the 1980s, Tokelauans gradually adopted flour and sugar as major carbohydrate sources, partially displacing starchy breadfruit and pulaka intake as well as coconut. They also began eating low-quality canned meats that partially replaced fish in their diet. Total calorie intake fluctuated between 1,500 and 2,000 kilocalories but did not trend in any particular direction over time. Here's a graph of macronutrient changes:


I found a study on the dental health of Tokelauans that I thought would be a fitting way to kick off this series. It's titled "Changed oral conditions, between 1963 and 1999, in the population of the Tokelau atolls of the South Pacific". I was only able to get my hands on the abstract, but that was enough. In 1963, Tokelauans were consuming roughly 15 lb of white flour and 10 lb of sugar per person per year. By 1980, the numbers were 60 lb and 69 lb for flour and sugar, and the trend was showing no sign of slowing down (see the graph in the previous post). I don't have numbers for 1999, but they're likely to be higher than in 1980, given the trend. For comparison, in 2006, the average American ate 117 lb of flour per year.

Let's look at a graph. This represents the DMF score (decayed, missing or filled teeth) of Tokelauans 15-19 and 35-44 years old, in 1963 and 1999. I've connected the two data points with lines to give an idea of the trend.

Dental decay increased eight-fold in adolescents and more than four-fold in adults. I don't know what their dental health was like before 1963, but I can only guess it was better than when this study was conducted, due to the fact that the Tokelauan diet was already partially modernized in 1963. The authors conclude "a serious decline in oral health has occurred over the past 35 years."

Does this sound familiar? It should be, because it's been known at least since the 1930s. Here's a quote from Nutrition and Physical Degeneration, describing the Tongan islanders, another Polynesian group:
The limited importation of foods to the Tongan Islands due to the infrequent call of merchant or trading ships has required the people to remain largely on their native foods. Following the war, however, the price of copra went up from $40.00 per ton to $400.00, which brought trading ships with white flour and sugar to exchange for the copra. The effect of this is shown very clearly in the condition of the teeth. The incidence of dental caries [cavities] among the isolated groups living on native foods was 0.6 per cent, while for those around the port living in part on trade foods, it is 33.4 per cent. The effect of the imported food was clearly to be seen on the teeth of the people who were in the growth stage at that time [i.e., they developed crooked teeth]. Now the trader ships no longer call and this forced isolation is very clearly a blessing in disguise. Dental caries has largely ceased to be active since imported foods became scarce, for the price of copra fell to $4.00 a ton. The temporary rise in tooth decay was apparently directly associated with the calling of trader ships.
0.6 percent is one tooth in every 167. In other words, less than one in five people had even a single cavity. That's without the benefit of tooth brushing, fluoride or any of the tools of modern dentistry. 33.4 percent tooth decay in Tongans living on modern foods means they had 11 cavities per person, a bit less than Tokelauans had in 1999.

Weston Price's anecdote above is remarkably similar to something that happened on Tokelau in 1979. The atolls didn't receive their normal shipments of European foods for a five-month period, during which they resorted to traditional foods. Here's an excerpt from the New Zealand Herald from June 11, 1979:
What will happen the day the country runs out of fuel and the ships stop bringing those "essential" foods like sugar and flour? Tokelauans recently found out what the answer to that question was- they got healthier. One of the victims of cyclone Meli earlier this year was the passenger cargo ship Cenpac Rounder, chartered five times per year by the Tokelau Affairs office in Apia. Left high and dry on a reef South of Fiji it was badly damaged and could not be moved. So ever since January the three Tokelau atolls have not received fresh supplies. Late last month the first ship called in, chartered by the Tokelau Affairs office. The Secretary of the office said that when the ship arrived the atolls had run out of fuel. So the fishermen had returned to the traditional sail, a sight on the lagoon that had almost been forgotten, thanks to the outboard motor. There was no sugar, flour, tobacco and starch foods either- and the atoll hospitals reported a shortage of business during the enforced isolation. It was reported that the Tokelauans had been very healthy during that time and had returned to the pre-European diet of coconuts and fish. Many people lost weight and felt very much better including some of the diabetics.
Read More

Sunday, 4 January 2009

The Tokelau Island Migrant Study: Background and Overview

Posted by Admin
Tokelau's troubles began in 1765 with its 'discovery' by British commodore John Byron. Traditionally, residents of the three small coral atolls collectively called Tokelau (Nukunonu, Fakaofo and Atafu) lived an isolated subsistence lifestyle, relying almost exclusively on coconut, seafood, wild fowl and fruit for food. The first reliable account of the Tokelauan population, by an American expedition in 1841, found the people there healthy and happy. Here's an excerpt from Migration and Health in a Small Society: the Case of Tokelau (1992):
The expedition considered the people living there to be healthy and handsome... They all appeared to be thriving on their 'meager diet' of fish and coconut, for no evidence of cultivation was seen... People of both sexes were tattooed with geometric designs and figures of turtles and fish. The numerous reports and journals of the Expedition leave the impression of a generally admirable people - amiable (though cautious), peaceful, orderly, and resourceful.
Between 1841 and 1863, the population of Tokelau was reduced to a fraction of its original size by epidemics and kidnapping by slave ships. The old social and religious order was broken, and the inhabitants were converted to Christianity by overzealous and competing Protestant and Catholic missionaries. During this time, Tokelauans also gained new food sources from other Polynesian islands, including breadfruit trees, pulaka (a starchy tuber), pigs and chickens. Breadfruit is a starchy fruit used like plantain.

Tokelau became a territory of New Zealand in 1925, and Tokelauans were granted New Zealand citizenship in 1948. In 1963, a government-assisted migration program was established to (voluntarily) bring Tokelauans to the New Zealand mainland, as the population of Tokelau had reached a cozy 1,870 people. When a cyclone devastated coconut and breadfruit crops in 1966, Tokelauans began taking advantage of the assisted migration program in earnest. By 1971, roughly half of Tokelauans lived on the New Zealand mainland.

There are two reasons why the Tokelau Island Migrant study is unique. First, it's one of the best-documented transitions from a traditional to a modern lifestyle, studied over decades on Tokelau and in New Zealand. Regular visits by physicians recorded the health of the population as it shifted from a relatively traditional diet to a more Western one. The second thing that makes this population unique is they traditionally have an extraordinarily high saturated fat intake from coconut. They derive between 54 and 62 percent of their calories from coconut, which is 87% saturated. This gives them perhaps the highest documented saturated fat intake in the world. This will be a test of the "diet-heart hypothesis", the idea that dietary fat, cholesterol and especially saturated fat contribute to cardiovascular disease!

Through the late 1960s, cargo ships visited Tokelau every three months, making only small contributions to the islanders' diets. In 1968, just two percent of Tokelauans' calories came from sugar. By 1978, the number had risen to 8 percent, and by 1982, 14 percent. The increase came chiefly from refined sugar and sweetened imported foods. In 1961, ships brought 12 lb of flour per person per year to Tokelau, increasing to 60 lb per year by 1980. During this time, importation of low-quality canned meats such as "mutton flaps" and chicken backs, and sweets also increased. Rice imports declined in the 1970s. The diet of migrants to New Zealand rapidly became highly Westernized, containing a higher proportion of refined carbohydrates such as flour and sugar, more red meat and poultry, and less coconut and seafood.

Here's a nice quote from Migration and Health in a Small Society: the Case of Tokelau, to set the tone for the rest of the posts in this series:
In the mid- and late twentieth century, 'Western diseases'- that is, diseases of affluence (Trowell and Burkitt 1981)- have become the major health risk for Polynesians, because of exposure to cosmopolitan diet patterns and life-style.
The varying cultures and resource bases of islands in the Pacific have influenced the degree to which their populations have been modernized and thus exposed to Western diseases. At one end of the spectrum are relatively traditional subsistence societies such as those on Tokelau and on the low islands- for example Pukapuka, Manihiki, and Rakahanga in the Northern Cook Islands. These atolls are characterized by the almost complete absence of soil, by the inhabitants' dependence on coconut in varied forms, and by a bountiful supply of fish as a major part of the traditional diet. Their populations are notable for their low levels of blood pressure, high rates of infectious disease, and low rates of coronary heart disease, obesity and diabetes. At the other end of the spectrum are those Polynesian societies, such as the Hawaiians and the Maori of New Zealand, who were submerged by 'Western' settlers and the dominating cultures they brought with them. These populations have inevitably acquired the diseases of the 'West', sometimes to an exaggerated degree.
That quote could have been straight out of Nutrition and Physical Degeneration, despite being published 60 years later. Good science is timeless. Join me in future posts as I explore the health of Tokelauan society as it transitions from a traditional diet and lifestyle to a modern one.
Read More